Fraktal Nedir???

  Fraktal

 

Fraktal parçalanmış ya da kırılmış anlamına gelen Lâtince fractus kelimesinden gelmiştir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılır. Kendi kendini tekrar eden ama sonsuza kadar küçülen sekilleri, kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzemesi olayıdır. Doğada görebilen örnekler örneğin bazı bitkilerin yapısı dir.

 

Fraktal ve Fraktal Geometri nedir?
İlk matematiksel fraktal kavramı 1861 de keşfedildi. Karl Weierstrass sürekli fakat hiçbir noktada diferensiyellenebilir olmayan , yani köşe noktalarından oluşan bir eğri üzerindeki değişmeleri araştırken, hiçbir noktada değişme oranının bulunamayacağı kanaati ile sarsılmıştır. Fraktal kelimesini Weierstrass bu cins eğriler için ilk defa kullanmıştır.
Matematik anlamda ilk çalışılan fraktal, Cantor Cümlesidir. Cantor (1845-1918) Halle Üniversitesi'ndeyken matematiğin temel konularından olan ve günümüzde Cümle Teorisi olarak adlandırılan alanı kuran bir Alman matematikçidir.
Fraktalların tarihi gelişiminde Cantor, Sierpinski, Von Koch, Peano gibi matematikçiler tarafından oluşturulan fraktallar matematiksel canavarlar olarak adlandırılır. Matematiksel canavarların bahçesinde veya ilk fraktalların ortaya çıktığı zamanlarda Cantor cümlesi görünüş açısından diğerlerinden daha az gösterişli olmasına ve diğerlerine göre doğal yoruma daha uzak olmasına rağmen oldukça önemlidir. Cantor cümlesinin, matematiğin pek çok alanında özelikle Kaotik Dinamik Sistemlerde önemli rol oynadığı ve pek çok fraktallar (Julia cümleleri gibi) için de gerekli bir model olduğu görülmektedir.
Etrafımızda, parlak, tuhaf, güzel şekilli cisimler görürüz. Bunlara Fraktal denir. Gerçekten bunlar nedir?
İnternette fraktallar hakkında çok fazla bilgi vardır, fakat bu bilgilerin büyük kısmı ya güzel resimler veya yüksek seviyeli matematiksel kavramlarla ilgilidir. Dolayısıyla kolayca anlaşılır bir ifade ile diyebiliriz ki fraktallar tuhaf resimleri olan cisimler, matematiksel nesnelerdir. Okulda karşılaştığımız matematiğin çoğu eski bilgilerdir. Örneğin, geometride karşılaştığımız çemberler, dörtgenler ve üçgenler M.Ö. 300 üncü yıllarında Öklid tarafından ortaya konulmuştur. Buna rağmen Fraktal Geometri daha çok yenidir. Fraktallar üzerinde matematikçiler tarafından araştırmalar son 25 yıldır başlamış bulunmaktadır.

 

Fraktal; matematikte, çogunlukla kendine benzeme özelligi gösteren karmasik geometrik sekillerin ortak adidir. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit sekillerden çok farklidir. Bunlar, dogadaki, Eukleidesçi geometri araciligiyla tanimlanamayacak pek çok uzamsal açidan düzensiz olguyu ve düzensiz biçimli tanimlama yetenegine sahiptir. Fraktal terimi “parçalanmis” yada “kirilmis” anlamina gelen Latince "fractus" sözcügünden türetilmistir. Ilk olarak 1975’te Polonya asilli matematikçi Beneoit B. Mandelbrot tarafindan ortaya atilan fraktal kavrami, yalnizca matematik degil fiziksel kimya, fizyoloji ve akiskanlar mekanigi gibi degisik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin dogmasina yol açmistir.
Tüm fraktallar kendine benzer ya da en azindan tümüyle kendine benzer olmamakla birlikte, çogu bu özelligi tasir. Kendine benzer bir cisimde cismi olusturan parçalar ya da bilesenler cismin bütününe benzer. Düzensiz ayrintilar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza degin sürebilir; öyle ki,her parçanin her bir parçasi büyütüldügünde, gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve agaç kabugunda kolayca gözlenebilir. Bu tip tüm dogal fraktallar ile matematiksel olarak kendine benzer olan bazilari, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarindan ötürü Eukleidesçi sekilleri ötelenme bakisina sahip degildirler. (Ötelenme bakisimina sahip bir cisim kendi çevresinde döndürüldügünde görünümü ayni kalir.)
Fraktallarin bir baska önemli özelligi de, fraktal boyut olarak adlandirilan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakis açisi ne kadar degistirilirse degistirilsin, hep ayni kalan fraktallarin bir özelligidir. Eukleidesçi boyutun tersine fraktal boyut, genellikle tam sayi olmayan bir sayiyla, yani bir kesir ile ifade edilir. Fraktal boyut, bir fraktal egri yardimiyla anlasilabilir.
Olusturulmasinin her asamasinda bu tip bir egrinin çevre uzunlugu 4/3 oraninda büyür. Fraktal boyut (D)4'e esit olabilmesi için alinmasi gereken kuvvetini gösterir; yani;
3d =4 bu bakimdan fraktal egriyi niteleyen boyut log4/log3 ya da kabaca 1,26'dir. Fraktal boyut, Eukleidesçi olmayan belirli bir biçimin karmasikligini ve sekil nüanslarini açiga çikarir.
Kendine benzerlik ve tamsayi olmayan boyutlu kavramlariyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde rastgele özelliklerden olusan fiziksel sistemlerin incelenmesinde giderek daha yaygin olarak kullanilmaya baslanmistir. Örnegin, gökada kümelerinin evrendeki dagiliminin saptanmasinda ve akiskan burgaçlanmalarina iliskin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanilmaktadir. Fraktal geometri bilgisayar grafiklerinde de yararli olmaktadir. Fraktal algoritma ise, engebeli daglik araziler ya da agaçlarin karisik dal sistemleri gibi karmasik, çok düzensiz dogal cisimlerin gerçektekine benzer görüntülerinin olusturulabilmesini olanakli kilmistir.

Fraktal Nedir?

Fraktal, matematikci Bénoit Mandelbrot tarafindan bulunan Mandelbrot kumelerinin ozel bir hali olan Julia Egrilerinin turevlerini cizebilir. En iyi bilinen fraktal bir kar tanesine benzeyen Koch Egrisi dir. Bu egriler iki boyutludur. Iki boyutlu cizim kompleks duzlemde yapilir. C1 sayisi kompleks sayinin reel kismini, C2 sayisi imajiner kismini temsil eder.

Fraktal kelimesi matematiksel anlamda kaotik ortamlarin icerdigi bilgi ile aynidir. Kaotik ortamin matematiksel anlami; sayilamaz coklukta duzenli olaydir.

Yorum Yaz
Arkadaşların Burada !
Arkadaşların Burada !